1. Tree searching strategies:
We can model the searching problem as a tree. Any internal node has at most b children. We define 3 functions.
g(n) = the path length from the root of the decision tree to node n.
h*(n) = the optimal path length from node n to a goal node.
h(n) = estimation of h*(n), h(n)≦h*(n) for all n
(Please use this 3 functions to answer the following question)
I. What node does “Breadth-First Search Algorithm” search first?
II. What node does “Best-First Search Algorithm” search first?
III. Hill-Climbing and Best-First Search are very similar, what is the difference?
IV. We say a searching algorithm is complete, if there exists a solution, this algorithm will eventually find it. Is “Depth-First Search Algorithm” complete? Is “Breadth-First Search Algorithm” complete?
V. If the tree height is bounded by h, what is the space complexity of “Depth-First Search Algorithm” and “Breadth-First Search Algorithm”?
VI. If we search the node which h(n) + g(n) is smallest for all node on the open list. Please analyze the pros and cons of this algorithm.
2. Please list the differences and similarities between divide-and-conquer and prune-and-search.
3. Dynamic programming
The 0-1 knapsack problem is defined as follows:
Given positive integers P1, P2, … , Pn, W1, W2, … , Wn and M.
Find X1, X2, … , Xn, Xi = {0,1} such that

[image: image1.wmf]å

=

n

1

i

i

i

X

P

is maximized subject to ≦M.

I. Give a dynamic programming method to find an optimal solution of the knapsack problem.

II. What is the time complexity of this algorithm?

III. According to II, does this algorithm run in polynomial time? Why or why not.

4. Find an optimal parenthesization of a matrix-chain product whose sequence of dimensions is (5, 10, 3, 12, 5, 50, 6).
5. Show that a full parenthesization of an n-element expression has exactly n-1 pairs of parentheses.
6. Find a longest common subsequence of
S1 = a a b c d a e f
S2 = b e a d f.
7. Find an optimal binary search tree for a1, a2, …, a6, if the identifiers, in order, have probabilities 0.20, 0.10, 0.15, 0.20, 0.30, 0.05 respectively and all other identifiers have zero probability.
8. Determine whether the following statements are correct or not
I. If a problem is NP-complete, then it cannot be solved by any deterministic polynomial algorithm in worst case.
II. If a problem is NP-complete, then we have not found any deterministic polynomial algorithm to solve it in worst cases.
III. If a problem is NP-complete, then it is unlikely that a polynomial algorithm can be found in the future to solve it in worst cases.
IV. In general, if a special case of a problem is NP-complete, then the general case problem can reduce to this special case.
V. NP-Hard is the hardest problem in NP, so we can’t reduce a NP-Hard problem to a NP problem.
9. Consider the following problem. Given two input variables a and b, return “YES” if a > b and “NO” if otherwise. Design a nondeterministic polynomial algorithm to solve this problem. Transform it to a Boolean formula such that the algorithm returns “YES” if and only if the transformed Boolean formula is satisfiable.
10. Clause-monotone satisfiability problem: A formula is monotone if each clause of
it contains either only positive variables or only negative variables. For instance
F = (X1
[image: image3.wmf]Ú

X2) & (-X3) & (-X2
[image: image4.wmf]Ú

-X​​3)
is a monotone formula. Show that the problem of deciding whether a monotone formula is satisfiable or not is NP-complete.
11. Halting problem is defined as follows: Given an arbitrary program with an arbitrary input data, will the program terminate or not? Please prove the halting problem is NP-Hard.
12. Show that an otherwise polynomial-time algorithm that makes at most a constant number of calls to polynomial-time subroutines runs in polynomial time, but that a polynomial number of calls to polynomial-time subroutines may result in an exponential-time algorithm.
Design and Analysis of Algorithms

Homework 3

Due: Jun 10, 2010

_1336483476.unknown

_1336483477.unknown

_1336483478.unknown

_1336483475.unknown

